方差和標準差的區(qū)別
①標準差和方差的概念不同,,計算方法也不同。
概念不同:標準差是離均差平方的算術平均數(shù)的算術平方根,;方差是在概率論和統(tǒng)計方差衡量隨機變量或一組數(shù)據(jù)時離散程度的度量,。
②樣本中各數(shù)據(jù)與樣本平均數(shù)的差的平方和的平均數(shù)叫做樣本方差,;樣本方差的算術平方根叫做樣本標準差。
樣本方差和樣本標準差都是衡量一個樣本波動大小的量,,樣本方差或樣本標準差越大,,樣本數(shù)據(jù)的波動就越大。
方差和標準差反映了什么
方差和標準差反映了一個數(shù)據(jù)集的離散程度,,方差=標準差的平方,。我們具體來看看吧!
①標準差:
是一組數(shù)據(jù)平均值分散程度的一種度量。一個較大的標準差,,代表大部分數(shù)值和其平均值之間差異較大;一個較小的標準差,,代表這些數(shù)值較接近平均值。
②方差:
是在概率論和統(tǒng)計方差衡量隨機變量或一組數(shù)據(jù)時離散程度的度量,,是衡量源數(shù)據(jù)和期望值相差的度量值,。概率論中方差用來度量隨機變量和其數(shù)學期望(即均值)之間的偏離程度。統(tǒng)計中的方差(樣本方差)是各個數(shù)據(jù)分別與其平均數(shù)之差的平方的和的平均數(shù),。
方差是和中心偏離的程度,,用來衡量一批數(shù)據(jù)的波動大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。 在樣本容量相同的情況下,,方差越大,,說明數(shù)據(jù)的波動越大,越不穩(wěn)定,。
推薦閱讀:
說明:因政策不斷變化,,以上會計實操相關內容僅供參考,如有異議請以官方更新內容為準,。